

University of Malta

Junior College

Subject:	Advanced Applied Mathematics
Date:	June 2012
Time:	9.00 - 12.00

End of Year Test

Worked Solutions

(i) $\mathbf{F} = \sum \mathbf{F}_i = (8 + 6 - 2)\mathbf{i} + (4 + 5 - 2 - 2)\mathbf{j} = (12\mathbf{i} + 5\mathbf{j}) \text{ N}$ $\Rightarrow \text{ magnitude of } \mathbf{F} = |\mathbf{F}| = \sqrt{12^2 + 5^2} = \underline{13} \text{ N}$

Let θ be the angle that **F** makes with the horizontal, then

$$\tan \theta = \frac{5}{12} \implies \theta = \tan^{-1} \left(\frac{5}{12} \right) = \underline{22.6^{\circ}}$$

(ii) Clockwise moment about *O*: 6(3) + 2(4) + 2(3) - 2(4) = 12c $\Rightarrow 24 = 12c$ i.e. c = 2m

Hence the line of action of \mathbf{F} passes through the point (0, 2).

The equation of the line is $y = \frac{5}{12}x + 2$ or $\underline{12y} = 5x + 24$

(iii) From part (ii), the clockwise moment about *O* is 12(2) = 24 Nm Hence the magnitude of C = |C| = 24 Nm

(i)

Since the lines of action of the weight and the friction are fixed, then using the 3 - force result, the line of action of the reaction passes through the intersection of the other two.

(ii) From symmetry, the centre of mass of a cylinder lies on the axis of the cylinder at a distance of half the vertical height i.e. a distance of $\frac{3d}{2}$ from its base.

For limiting equilibrium, the centre of mass must lie exactly vertically above the lowest point of contact.

By referring to the diagram, the maximum angle occurs when

$$\tan \alpha = \frac{\frac{d}{2}}{\frac{3d}{2}} = \frac{1}{3} \qquad \Rightarrow \quad \alpha = \tan^{-1}\left(\frac{1}{3}\right) = \underline{18.4^{\circ}}$$

Resolving vertically: $R = W \cos \alpha_s$...(a) Resolving horizontally: $\mu R = W \sin \alpha_s$...(b)

 $\frac{(b)}{(a)} \qquad \frac{\mu R}{R} = \frac{W \sin \alpha_s}{W \cos \alpha_s} \quad \Rightarrow \mu = \tan \alpha_s$

$$\therefore \tan \alpha_s = \frac{2}{9}$$
 for sliding

 \Rightarrow sliding occurs first

(i) From the graph XA = 4 m

 \Rightarrow area of triangle = 4m

Since the base of the triangle = 2.5 (time),

Then $4 = \frac{1}{2}(2.5)(V_{\text{max}})$, where V_{max} is the maximum speed for this section

$$\Rightarrow 8 = 2.5 V_{\text{max}} \quad \text{i.e. } V_{\text{max}} = \frac{8}{2.5} = \underline{3.2 \text{m/s}}$$

(ii) The gradient of a velocity – time graph is the acceleration

Thus Acceleration = $3\text{m/s}^2 = \frac{V}{\text{time}} = \frac{V}{2}$

$$\Rightarrow V = 3 * 2 = \underline{6m/s}$$

- (iii) Area of trapezium = $\frac{1}{2}$ (sum of parallel sides)(perpendicular height)
 - $\therefore 48 = \frac{1}{2}(t_c + 12) * 6$, by referring to the diagram below

$$\Rightarrow 48 * 2 = (t_c + 12) * 6$$
$$\frac{48 * 2}{6} = t_c + 12 \quad \Rightarrow 16 = t_c + 12$$

i.e. $t_c = 4 s$

Thus *P* starts its deceleration at t = 4.5 + 4 = 8.5 s

(iv) The deceleration is found by finding the gradient of the last part $% \left({{{\left({{{{\bf{n}}} \right)}} \right)}} \right)$

Deceleration =
$$\frac{0-6}{14.5-8.5} = \frac{-6}{6} = -1 \text{ m/s}^2$$

: deceleration of 1 m/s^2

Given $\tan \theta = \frac{7}{24}$

At equilibrium,

Resolving forces vertically: $R\cos\theta - \mu R\sin\theta = mg$

$$R(\cos\theta - \mu\sin\theta) = mg \quad \dots (a)$$

 $F = ma = \frac{mv^2}{r}$

Resolving forces horizontally:

 $R\sin\theta + \mu R\cos\theta = \frac{mv^2}{r}$ $R(\sin\theta + \mu\cos\theta) = \frac{mv^2}{r} \quad \dots(b)$ $\frac{(b)}{(a)} \qquad \qquad \frac{R(\sin\theta + \mu\cos\theta)}{R(\cos\theta - \mu\sin\theta)} = \frac{mv^2}{rg}$ $(\sin\theta + \mu\cos\theta) = v^2$

$$\frac{(\sin\theta + \mu\cos\theta)}{(\cos\theta - \mu\sin\theta)} = \frac{v}{gr}$$
Dividing by $\cos\theta$:

$$\frac{(\tan\theta + \mu)}{(1 - \mu\tan\theta)} = \frac{v^2}{gr}$$

$$\Rightarrow \qquad v^2 = \frac{rg(\tan\theta + \mu)}{(1 - \mu\tan\theta)}$$
Substituting the given values $v^2 = \frac{60(10)(\frac{7}{24} + \frac{3}{7})}{(1 - (\frac{3}{7})^2)} = \frac{600(\frac{121}{168})}{\frac{147}{147}} = 493.877$

$$\Rightarrow \qquad v = \sqrt{493.877} = \underline{22.22 \text{ m/s}}$$

(i) Resolving horizontally: $\mu R_a = R_c \cos 45^0 = \frac{R_c}{\sqrt{2}}$...(a)

Resolving vertically: $W = R_a + R_c \sin 45^0 = R_a + \frac{R_c}{\sqrt{2}}$...(b)

Taking clockwise moments about A: $W \cos 45^{\circ}(2a) = R_c(3a)$

$$\frac{W(2a)}{\sqrt{2}} = R_c(3a) \implies R_c = \frac{W(2a)}{3a\sqrt{2}} = \frac{W\sqrt{2}}{3}\dots(c)$$

From (a) $R_a = \frac{R_c}{\mu\sqrt{2}} = \frac{1}{\mu\sqrt{2}} \frac{W\sqrt{2}}{3} = \frac{W}{3\mu}$, by using the result of (c)

Substituting this result and that of (c) in (b), we get:

$$W = \frac{W}{3\mu} + \frac{1}{\sqrt{2}} \frac{W\sqrt{2}}{3} = \frac{W}{3\mu} + \frac{W}{3}$$

Dividing by W: $1 = \frac{1}{3\mu} + \frac{1}{3} \implies \frac{2}{3} = \frac{1}{3\mu}$ i.e. $\mu = \frac{1}{2}$

(ii) Referring to the diagram below:

The two weights at *B* and *D* are parallel and are equidistant from the peg *C*. Thus by symmetry their resultant is 2W (vertically downwards) and passes through *C*.

Thus if we consider their resultant instead of the 2 weights, we have 2 out of 3 forces in equilibrium whose line of action passes through *C*.

Using the 3 – force result, the total reaction S must pass through C as well.

 \therefore if λ is the angle of friction, then $\lambda = 45^{\circ}$

$$\Rightarrow \mu = \tan \lambda = \tan 45^\circ = \underline{1}$$

Question 6

(a) The pendulum beats every 2 s \Rightarrow period T = 4 s The frequency $f = \frac{1}{T} = \frac{1}{4} = 0.25$ Hz Using $T = 2\pi \sqrt{\frac{l}{g}}$

Bringing *l* subject of the equation : $l = \frac{gT^2}{4\pi^2} = \frac{g(4)^2}{4\pi^2} = \frac{4g}{\frac{\pi^2}{2}}$

(b) (i) When the particle is 0.06 m away from *P*, i.e. 0.3 - 0.06 = 0.24 m from the centre of motion, its speed is 0.9 m/s.

Using the formula: $v^2 = \omega^2 (a^2 - x^2)$

Substituting $0.9^2 = \omega^2 (0.3^2 - 0.24^2)$

$$\Rightarrow 0.9^2 = \omega^2(0.0324)$$
 i.e. $\omega^2 = \frac{0.9^2}{0.0324} = 25$

 $\therefore \omega = 5 \text{ rad/s}$

The basic equation of S.H.M. is $\ddot{x} = -\omega^2 x$. Substituting $\underline{\ddot{x}} = -25x$

(ii) the Period
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{5} s$$

(iii) Maximum velocity occurs when x = 0 (centre of motion) $\therefore v^2 = \omega^2 a^2 \implies v = \omega a = 5(0.3) = 1.5 \text{ m/s}$

Maximum acceleration occurs when x = a (extremes)

$$\therefore \quad \ddot{x} = -\omega^2 x = -25(0.3) = -7.5 \text{ m/s}^2$$

Hence magnitude of acceleration = $\frac{7.5 \text{ m/s}^2}{1000 \text{ m/s}^2}$

Question 7

10,000 N

(i) Resolving vertically the whole system: $\mathbf{Y} = 10,000 \text{ N}$ Taking anticlockwise moments at *A*: $\mathbf{P}l = 10,000(2l)$.

 \Rightarrow **P** = <u>20,000 N</u>

(ii) Resolving horizontally the whole system: $\mathbf{X} = \mathbf{P} = 20,000 \text{ N}$ Let **R** be the reaction force on the framework at *A*.

$$\mathbf{R} = \sqrt{\mathbf{X}^2 + \mathbf{Y}^2} = \sqrt{(20,000)^2 + (10,000)^2} = \underline{22,360.7 \text{ N}}$$

Let θ be the angle it makes with the horizontal,

Then
$$\tan \theta = \frac{10,000}{20,000} = \frac{1}{2} \implies \theta = \frac{26.57^{\circ}}{2}$$

(iii) From the diagram, it is clear that *BD* is neutral i.e. there is no force in *BD* This can be easily verified because if we Resolve vertically at *D*: $T_{BD} = 0$ Resolving horizontally at *A*: $\mathbf{X} = T_{AB} \implies T_{AB} = \underline{20,000 \text{ N}}$ Resolving vertically at *A*: $\mathbf{Y} = T_{AE} \implies T_{AE} = \underline{10,000 \text{ N}}$ Resolving vertically at *C*: 10,000 = $T_{BC} \cos 45^{\circ} \implies T_{BC} = \underline{14142.1 \text{ N}}$ Resolving horizontally at *C*: $T_{BC} \sin 45^{\circ} = C_{DC}$ $\implies C_{DC} = 14142.1 \sin 45^{\circ} = \underline{10,000 \text{ N}}$

Resolving horizontally at $D: C_{ED} = C_{DC} \implies C_{ED} = \underline{10,000 \text{ N}}$

Resolving vertically at *E*: $T_{AE} = C_{EB} \sin 45^{\circ}$

$$\Rightarrow C_{EB} = \frac{T_{AE}}{\sin 45^{\circ}} = \frac{10,000}{\sin 45^{\circ}} = \frac{14,142.1 \text{ N}}{\sin 45^{\circ}}$$

In rods *AB*, *BC* and *EA*, there is tension, while in the rods *CD*, *DE* and *BE*, there is compression. There is no force in rod *BD*.

Question 8

(i)
$$\mathbf{T} = \frac{\lambda x}{a}$$

At equilibrium, resolving vertically: $\mathbf{T} = mg$

Given a = 0.3 m and x = 0.1 m

Substituting:
$$mg = \frac{\lambda(0.1)}{0.3} \implies \lambda = \frac{0.3(mg)}{0.1} = \underline{3mg}$$

(ii)

Using
$$\mathbf{T} = \frac{\lambda x}{a}$$
, we get $\mathbf{T} = \frac{3mg(0.45 - 0.3)}{0.3} = \frac{3mg}{2}$
At equilibrium, resolving vertically $\mathbf{T}\cos\alpha = mg$
Substituting $\frac{3mg}{2}\cos\alpha = mg$ $\Rightarrow \cos\alpha = \frac{2}{3}$ $\Rightarrow \alpha = \underline{48.2^{0}}$
(iii) At equilibrium, resolving horizontally $\mathbf{P} = \mathbf{T}\sin\alpha$
 $\Rightarrow \mathbf{P} = \frac{3mg}{2}\sin 48.2^{0} = \underline{1.118mg}$
Elastic Potential Energy = E.P.E. $= \frac{\lambda x^{2}}{2a} = \frac{3mg(0.45 - 0.3)^{2}}{2(0.3)}$
 $= \underline{0.1125mg}$

(i)

- (ii) Resolving vertically $\mathbf{R} = 0.4g = 4$ N But the frictional force $\mathbf{F} = \mu \mathbf{R} = (0.5)(4) = 2$ N
- (iii) Consider the 0.3 kg block

Resolving vertically and applying Newton's second law $\mathbf{F} = ma$

$$0.3g - \mathbf{T} = 0.3a$$
 ...(a)

Consider the 0.4 kg block

Resolving horizontally and applying Newton's second law $\mathbf{F} = ma$

 $\mathbf{T} - \boldsymbol{\mu} \mathbf{R} = 0.4a$ $\mathbf{T} - 2 = 0.4a \text{ by using part (ii)} \dots (b)$

(a) + (b):
$$0.3g - 2 = 0.7a \implies a = \frac{0.3g - 2}{0.7} = \frac{10}{\frac{7}{2}} \text{ m/s}^2$$

- (iv) Applying v = u + at, we get $v = 0 + \left(\frac{10}{7}\right)7 = \underline{10 \text{ m/s}}$
- (v) The 0.3 kg block would accelerate further. In fact its speed would increase at a faster rate since $\mathbf{T} = 0$

The 0.4 kg block would decelerate. In fact its speed would decrease since $\mathbf{T} = 0$ and the only horizontal force acting on the particle would be the frictional force.

(i) At equilibrium, resolving along the line of slope

$$\frac{\mathbf{P}}{V} - \mathbf{R} = (800g\sin\theta) \implies \frac{10000}{V} - \mathbf{R} = 8000 \left(\frac{1}{40}\right) = 200 \dots (a)$$

At equilibrium, resolving along the line of slope

$$\mathbf{R} - \frac{P}{2V} = (800g \sin \theta) \implies \mathbf{R} - \frac{5000}{V} = 8000 \left(\frac{1}{40}\right) = 200 \quad \dots \text{(b)}$$

(a) + (b) $\frac{10000}{V} - \frac{5000}{V} = 400 \implies \frac{5000}{V} = 400$
i.e. $V = \frac{5000}{400} = \frac{25}{2} = \underline{12.5 \text{ m/s}}$

Substituting in (a):
$$\frac{10000}{12.5} - \mathbf{R} = 200 \implies \mathbf{R} = \underline{600 \text{ N}}$$
(ii)
$$\underbrace{V = 12.5 \text{ m/s}}_{600 \text{ N}} \xrightarrow{a}_{\hline V}$$

Applying Newton's 2nd law
$$\mathbf{F} = ma$$

 $\frac{P}{V} - 600 = 8000a$
 $\frac{10000}{12.5} - 600 = 8000a \implies 800 - 600 = 800a$ i.e. $a = 0.25 \text{ m/s}^2$

(i) Consider the horizontal axes:

x = 36 m (Given)

 $\dot{x} = u \cos \alpha$, where *u* is the initial velocity and α is the angle of projection.

$$\dot{x} = 24\cos 30^{\circ} = 24\left(\frac{\sqrt{3}}{2}\right) = 12\sqrt{3}$$
$$x = (u\cos\alpha)t = (12\sqrt{3})t$$
$$\therefore 36 = (12\sqrt{3})t \implies t = \frac{36}{12\sqrt{3}} = \frac{3}{\sqrt{3}} = \frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{$$

(ii) Consider the vertical axes:

$$s = h, \quad u = 24 \sin 30^{\circ}, \quad a = -10 \text{ m/s}^2, \quad t = \sqrt{3}$$

Using $s = ut + \frac{1}{2}at^2$
we get $h = (24 \sin 30^{\circ})(\sqrt{3}) + \frac{1}{2}(-10)(\sqrt{3})^2$
 $h = 12(1.732) - 5(3) = \frac{5.785 \text{ m}}{1000}$
(iii) $\dot{x} = u \cos \alpha = 24 \cos 30^{\circ} = 20.785$
 $\dot{y} = u \sin \alpha - gt = 24 \sin 30^{\circ} - 10(\sqrt{3}) = -5.321$
Speed $= \sqrt{\dot{x}^2 + \dot{y}^2} = \sqrt{(20.785)^2 + (-5.321)^2} = 21.455 \text{ m/s}}$
(iv)

$$\tan \alpha = \frac{5.321}{20.785} = 0.256 \implies \alpha = \underline{14.36^{\circ}}$$
 below the horizontal.

(i) 1^{st} collision

 $e = \frac{\text{SeparationSpeed}}{\text{ApproachSpeed}} = \frac{v_1 - u_1}{u - 0} \implies v_1 - u_1 = eu \quad \dots (a)$

Applying conservation of Momentum, we get

$$mu + m(0) = mu_1 + mv_1 \implies u_1 + v_1 = u \quad \dots(b)$$

(a) + (b) $2v_1 = eu + u = u(1+e) \implies v_1 = \frac{u}{2}(1+e)$

(ii) 2^{nd} collision

$$e = \frac{w_2 - v_2}{v_1 - 0} \implies w_2 - v_2 = ev_1$$
 ...(c)

Applying conservation of Momentum, we get

 $mv_1 + 2m(0) = mv_2 + 2mw_2 \implies v_2 + 2w_2 = v_1 \dots(d)$

(c) + (d)
$$w_2 + 2w_2 = v_1(1+e) = \frac{u}{2}(e+1)(e+1)$$

 $\Rightarrow 3\left(\frac{3}{8}u\right) = \frac{u}{2}(1+e)^2 \text{ i.e. } \frac{9}{8} = \frac{(1+e)^2}{2}$
 $(1+e)^2 = \frac{9}{4} \Rightarrow (1+e) = \frac{3}{2} \text{ i.e. } e = \frac{1}{2}$

(i) Applying Newton's second law $\mathbf{F} = ma$, we get

$$135 - 9v = 81 \frac{dv}{dt}$$

Divide by $135 - 9v$:
$$1 = \frac{81}{135 - 9v} \frac{dv}{dt}$$

It simplifies to
$$1 = \frac{9}{15 - v} \frac{dv}{dt}$$

(ii) Integrating both sides of the differential equation

$$\int_{0}^{t} dt = \int_{0}^{v} \frac{9}{15 - v} dv$$

$$t = -9\ln|15 - v| |_{0}^{v} = -9\ln|15 - v| + 9\ln|15 = 9\ln\left|\frac{15}{15 - v}\right|$$

$$\Rightarrow \ln\left|\frac{15}{15 - v}\right| = \frac{t}{9} \quad \text{i.e.} \quad \frac{15}{15 - v} = e^{\frac{t}{9}}$$

$$15 = (15 - v)e^{\frac{t}{9}} \quad \text{or} \quad 15e^{-\frac{t}{9}} = 15 - v$$

$$v = 15 - 15e^{-\frac{t}{9}} = \frac{15\left(1 - e^{-\frac{t}{9}}\right)}{15 - v}$$

(iii) As
$$t \to \infty$$
 $e^{-\frac{t}{9}} \to 0$ \therefore $v = \underline{15 \text{ m/s}}$
 $v = \frac{dx}{dt} = 15(1 - e^{-\frac{t}{9}})$ by using part (ii)

Integrating this differential equation

$$\int_{0}^{x} dx = \int_{0}^{9} 15(1 - e^{-\frac{t}{9}}) dt$$

$$\Rightarrow x = \int_{0}^{9} 15(1 - e^{-\frac{t}{9}}) dt = \int_{0}^{9} (15 - 15e^{-\frac{t}{9}}) dt$$

$$x = \left[15t - 15\frac{e^{-\frac{t}{9}}}{-\frac{1}{9}}\right]_{0}^{9} = \left[15t + 135e^{-\frac{t}{9}}\right]_{0}^{9}$$

$$x = 15(9) + 135e^{-1} - 15(0) - 135e^{0} = 135 + 135e^{-1} - 135 = \underline{49.66} \text{ m}$$

Question 14

(i) Given v_M = 6i + 12j and v_H = 12i - 8j The velocity of Harvey relative to Mario = v_{H-M} = v_H - v_M = (12-6)i + (-8-12)j = (6i - 20j) km/h Given r_M (t = 0) = 5i - j and r_H (t = 0) = 18i + 5j The initial position of Harvey relative to Mario = r_{H-M} = r_H - r_M = (18-5)i + (5+1)j = (13i + 6j) km (ii) In general r(t) = r(t = 0) + tv

$$\therefore_{H} r_{M}(t) =_{H} r_{M}(t = 0) + t_{H} v_{M}$$
$$\implies_{H} r_{M}(t) = = 13\mathbf{i} + 6\mathbf{j} + t(6\mathbf{i} - 20\mathbf{j}) = \underline{(13 + 6t)\mathbf{i} + (6 - 20t)\mathbf{j}\,\mathrm{km}}$$

(iii) Diagram relative to M

Closest approach occurs when $_{H}r_{M}(t)$ is perpendicular to $_{H}v_{M}(t)$

i.e. when
$$_{H}r_{M}(t) \cdot _{H}v_{M}(t) = 0$$

i.e. $\{(13+6t)\mathbf{i} + (6-20t)\mathbf{j}\} \cdot \{6\mathbf{i} - 20\mathbf{j}\} = 0$
 $(13+6t)(6) + (6-20t)(-20)=0$
 $78 + 36t - 120 + 400t = 0$
 $436t = 42 \implies t = \frac{42}{436} = 0.0963 \text{ hr} = 5.78 \text{ mins}$