

University of Malta

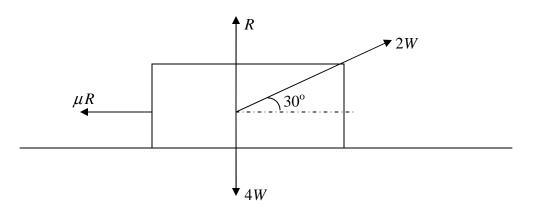
Junior College

Subject:	Advanced Applied Mathematics
Date:	June 2013
Time:	9.00 - 12.00

End of Year Test

Worked Solutions

(a)



At Equilibrium:

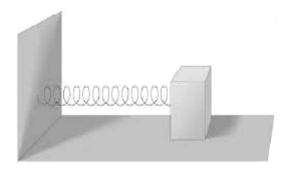
Resolving vertically
$$R + 2W \sin 30^\circ = 4W$$

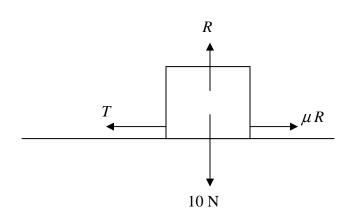
 $R + 2W \left(\frac{1}{2}\right) = 4W$
 $R + W = 4W \implies R = \underline{3W}$

 $\mu R = 2W\cos 30^{\circ}$

Resolving horizontally

$$\mu(3W) = 2W\left(\frac{\sqrt{3}}{2}\right)$$
$$\Rightarrow \quad \mu = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}$$
Angle of friction = $\lambda = \tan^{-1}(\mu) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \underline{30^{\circ}}$





With respect to the diagram above:

Resolving $\ \ R = 10 \text{ N}$

$$\Leftrightarrow \qquad T = \mu R = \left(\frac{1}{2}\right)(10) = 5 \text{ N}$$

Hence T = 5 N

Applying Hooke's law i.e. $T = \frac{\lambda x}{a}$,

where a is the natural length = 20 cm = 0.2 m, λ is modulus of elasticity and x is the extension.

(b)

we get
$$5 = \frac{50x}{0.2}$$

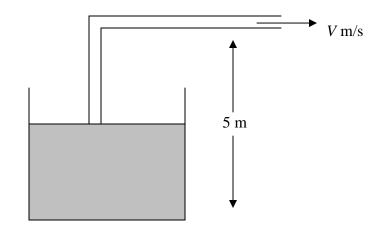
Hence
$$x = \frac{5(0.2)}{50} = 0.02 \,\mathrm{m}$$

The above applies for the closest and furthest positions. In the former it is a compression, while in the latter it is an extension.

:. Furthest point = 0.2 + 0.02 = 0.22 m from support. Closest point = 0.2 - 0.02 = 0.18 m from support.

Question 2

(i)



The pump is 60% efficient. Hence the actual mechanical work is 60% of 0.825 kW = $\left(\frac{60}{100}\right)$ * 0.825 = 0.495 kW = 495 W ...(a) The volume of water per minute = 0.3 m³.

Hence the volume per second
$$= \frac{0.3}{60} = \frac{1}{200} \text{ m}^3 = 0.005 \text{ m}^3$$

Since Density = $\frac{Mass}{Volume}$, then Mass = Density * Volume

$$= 1000 \left(\frac{1}{200}\right) = 5 \text{ kg/s}$$

Power = Energy/s = K.E./s + P.E./s

Energy/s =
$$\frac{1}{2}mv^2 + mgh$$

By (a) above, Energy/s =	= 495 J, m = 5 kg/s, h = 5 m
Substituting, we get	$495 = \frac{1}{2}(5)v^2 + 5(10)5$
On simplifying	$495 = 2.5v^2 + 250$
\Rightarrow	$495 - 250 = 2.5v^2$
Hence	$v^2 = 98$ i.e. $v = \sqrt{98} = 9.9 \text{ m/s}$

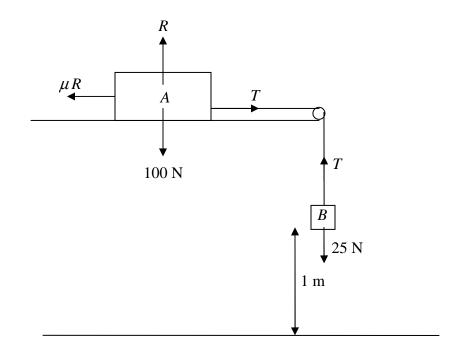
(ii)

If *V* is the velocity of water through the nozzle and *A* is the cross sectional area of the nozzle,

Then volume per second = AV

0.005 = A(9.9)

Hence
$$A = \frac{0.005}{9.9} = 0.00051 \,\mathrm{m}^2 = 5.1 \,\mathrm{cm}^2$$



(i) Consider the block *B*. Given u = 0, t = 2, s = 1, a = ?Applying the equation of motion: $s = ut + \frac{1}{2}at^2$ $1 = 0(2) + \frac{1}{2}a(2)^2$ $1 = \frac{1}{2}a(2)^2 \implies a = \frac{1}{2}m/s^2$ Applying: v = u + at

$$v = 0 + \frac{1}{2}(2) \implies v = \underline{1 \text{ m/s}}$$

Applying Newton's second law F = ma on block B,

$$\downarrow \qquad 25 - T = 2.5 \left(\frac{1}{2}\right)$$
$$25 - T = 1.25 \implies T = 25 - 1.25 = \underline{23.75 \text{ N}}$$

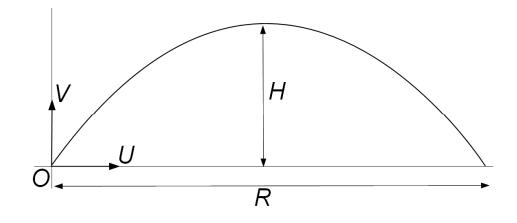
At equilibrium,

Resolving \updownarrow on block A R = 100 N Applying Newton's second law F = ma on block A, \rightarrow $T - \mu R = 10a$ Substituting $23.75 - \mu(100) = 10\left(\frac{1}{2}\right)$ $23.75 - \mu(100) = 5 \Rightarrow \mu = 0.1875$

After *B* hits the floor, there is no tension *T* in the string. Applying Newton's second law F = ma on block *A*, $\leftarrow \qquad \mu R = 10 a$ Substituting 0.1875(100) = 10a $\Rightarrow a = 1.875 \text{ m/s}^2$ decelerating Applying the equation of motion: $v^2 = u^2 + 2as$ $0 = (1)^2 + 2(-1.875)s$ 0 = 1 - 3.75sHence $s = \frac{1}{3.75} = 0.267 \text{ m}$

(ii)

(iii)



(a)

Applying the equations of motion

$$\uparrow s = 0$$
$$u = V$$
$$a = -g$$

 $\therefore \text{ substituting in } s = ut + \frac{1}{2}at^2$ $0 = Vt - \frac{1}{2}gt^2$ $0 = t\left(V - \frac{1}{2}gt\right)$ $\Rightarrow t = 0, \text{ or } t = \frac{2V}{g}$

Considering in horizontal direction:

$$s = R$$

$$u = U$$

$$g = 0$$

On substituting in the same equation of motion, we get R = Ut

Hence
$$R = U\left(\frac{2V}{g}\right) = \frac{2UV}{g}$$

For maximum height, time = $\frac{1}{2}$ time of flight = $\frac{1}{2}\left(\frac{2V}{g}\right) = \frac{V}{g}$

Applying the equations of motion for maximum height

$$\uparrow s = H$$
$$u = V$$
$$a = -g$$
$$t = \frac{V}{g}$$

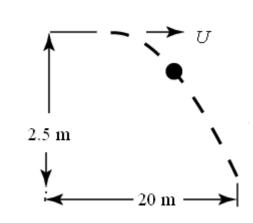
: substituting in

$$s = ut + \frac{1}{2}at^2$$

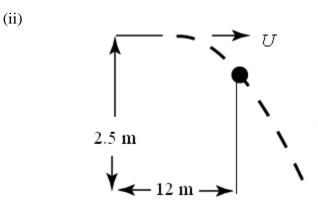
$$H = V\left(\frac{V}{g}\right) - \frac{1}{2}g\left(\frac{V}{g}\right)^2 = \frac{V^2}{\underline{2g}}$$

(b)

(i)



Let U be the initial speed In the horizontal direction $\rightarrow s = 20$ u = U a = 0 \therefore using $s = ut + \frac{1}{2}at^2$, we get 20 = Ut(i) In the vertical direction $\downarrow s = 2.5$ u = 0 a = 10 \therefore using $s = ut + \frac{1}{2}at^2$, we get $2.5 = 0 + \frac{1}{2}(10)t^2$ $2.5 = 5t^2$ i.e. $t^2 = \frac{1}{2}$ or $t = \frac{1}{\sqrt{2}}$ Substituting in (i), we get $20 = U\left(\frac{1}{\sqrt{2}}\right) \Rightarrow U = 20\sqrt{2}$ m/s



In the horizontal direction
$$\rightarrow s = 12$$

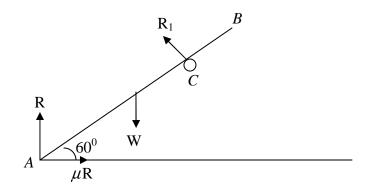
 $u = U = 20\sqrt{2}$
 $a = 0$
 \therefore using $s = ut + \frac{1}{2}at^2$, we get $12 = 20\sqrt{2}t \implies t = \frac{12}{20\sqrt{2}} = \frac{3}{5\sqrt{2}}$

This is the time that the ball is over the net.

In the vertical direction $\downarrow t = \frac{3}{5\sqrt{2}}$ u = 0a = 10 \therefore using $s = ut + \frac{1}{2}at^2$, we get $s = 0 + \frac{1}{2}(10)\left(\frac{3}{5\sqrt{2}}\right)^2 = 5\left(\frac{9}{50}\right) = 0.9 \text{ m}$

This implies that the ball descended a distance of 0.9 m from the starting position, which is 25 m above ground.

 \Rightarrow the ball is 2.5 – 0.9 = <u>1.6 m</u> above ground.



(i)

Let R and R_1 be the reactions at points A and C, as shown. Taking moments at A :

$$\frac{3l}{2}R_1 = l \operatorname{W} \cos 60^0 \qquad \Longrightarrow \qquad \frac{3l}{2}R_1 = \frac{l \operatorname{W}}{2}$$

Thus $R_1 = \frac{W}{3}$

Resolving vertically, we get

$$\Upsilon \qquad R + R_1 \cos 60^0 = W \qquad \implies R + R_1 \left(\frac{1}{2}\right) = W$$

Substituting the value of R₁, we get $R + \frac{W}{3} \left(\frac{1}{2}\right) = W$

Thus
$$R = W - \frac{W}{6} = \frac{5W}{6}$$

(ii)

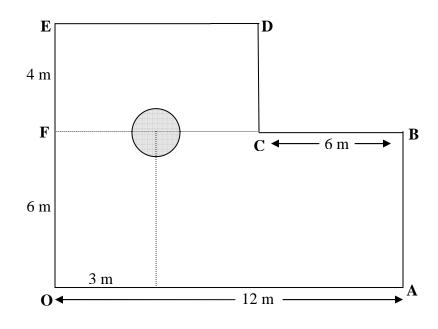
Resolving horizontally, we get

$$\leftrightarrow \qquad \mu R = R_1 \sin 60^0 \qquad \Rightarrow \qquad \mu R = R_1 \left(\frac{\sqrt{3}}{2}\right)$$

 \neg

Substituting the values of R and R₁, we get $\mu\left(\frac{5W}{6}\right) = \left(\frac{W}{3}\right)\left(\frac{\sqrt{3}}{2}\right)$

i.e.
$$\mu = \frac{\sqrt{3}}{5}$$



(i) The area of the shaded circle = $\pi \left(\sqrt{\frac{7}{\pi}} \right)^2 = 7$ sq.units The area of the rectangle OABF = 12*6 = 72 sq.units The area of the rectangle CDEF = 4*6 = 24 sq.units Hence the area of cross section of the concrete block = 72 + 24 - 7 = 89 sq. units

Let M be the mass per unit area and

let $(\overline{x}, \overline{y})$ be the centre of mass of the block with respect to the origin O. The centre of mass of the circle and rectangles OABF and CDEF are at (3, 6); (6, 3) and (3, 8) respectively.

Applying the principle of moments in the x direction, we get

$$89Mgx = 72Mg(6) + 24Mg(3) - 7Mg(3) = 483Mg$$

$$\Rightarrow \quad \overline{x} = \frac{483}{89} = \underline{5.43}$$

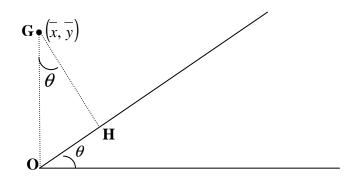
....

Applying the principle of moments in the y direction, we get

$$89Mgy = 72Mg(3) + 24Mg(8) - 7Mg(6) = 366Mg$$

$$\Rightarrow \quad \overline{y} = \frac{366}{89} = \underline{4.11}$$

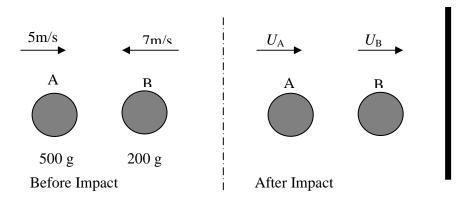
(ii)



At equilibrium, the line through the centre of mass pass through O. With respect to triangle OGH, where angle OHG is a right angle

:.
$$\tan \theta = \frac{x}{y} = \frac{5.43}{4.11} \implies \theta = \tan^{-1} \left(\frac{5.43}{4.11} \right) = \frac{52.9^{\circ}}{4.11}$$

(i)



Using the principle of conservation of momentum

 $500(5) - 200(7) = 500U_{A} + 200 U_{B}$ i.e. $1100 = 500U_{A} + 200 U_{B}$ $11 = 5U_{A} + 2U_{B} \dots (i)$

Using the law of Restitution,

$$\frac{3}{4} = \frac{U_{\rm B} - U_{\rm A}}{5 - (-7)} = \frac{U_{\rm B} - U_{\rm A}}{12} \text{ i.e. } U_{\rm B} - U_{\rm A} = 9 \dots \text{ (ii)}$$

(i)
$$2U_{\rm B} + 5U_{\rm A} = 11$$
 -

(ii)
$$\times 2$$
 $\underline{2U_{\mathrm{B}} - 2U_{\mathrm{A}} = 18}$

 $7U_{\rm A} = -7 \implies U_{\rm A} = -1 \text{ m/s}$

Thus sphere A changes direction and travels to the left.

Substituting this value in (ii), we get $U_B + 1 = 9$ i.e. $U_B = 8$ m/s Consider the impact of sphere B with the wall.

Using the law of Restitution,
$$\frac{1}{2} = \frac{U'_{B}}{U_{B}} \implies U'_{B} = \frac{U_{B}}{2} = \frac{8}{2} = 4$$
m/s

Sphere B travels in the direction of A with speed of 4m/s,

while sphere A travels with speed of 1m/s.

Thus there is surely going to be a second collision between the 2 spheres.

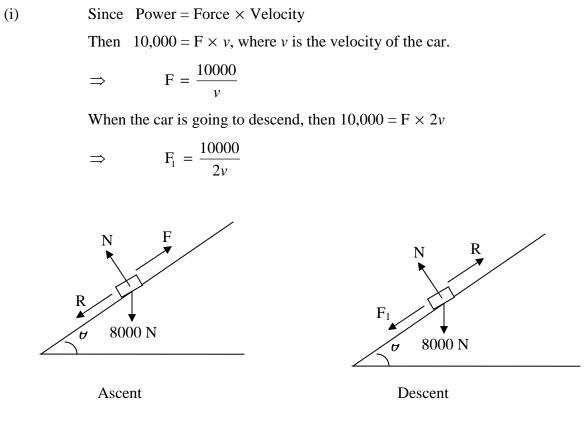
1 m/s $V_{\rm A}$ $V_{\rm B}$ 4m/sА В А В 500 g 200 g Before 2nd Impact After 2nd Impact $500(1) + 200(4) = 500V_{\rm A} + 200V_{\rm B}$ $1300 = 500V_{\rm A} + 200V_{\rm B} \implies 13 = 5V_{\rm A} + 2V_{\rm B} \dots$ (i) Using the law of Restitution, $\frac{3}{4} = \frac{V_{\rm A} - V_{\rm B}}{4 - (1)} = \frac{V_{\rm A} - V_{\rm B}}{3} \implies V_{\rm A} - V_{\rm B} = \frac{9}{4} \dots (ii)$ $5V_{\rm A} + 2V_{\rm B} = 13$ (i) _ $5V_{\rm A} - 5V_{\rm B} = \frac{45}{4}$ (ii) ×5 $7V_{\rm B} = \frac{7}{4} \implies V_{\rm B} = \frac{1}{4} \text{m/s}$ $5V_{\rm A} + 2\left(\frac{1}{4}\right) = 13 \implies V_{\rm A} = \frac{5}{2} \,\mathrm{m/s}$ Substituting in (i): Initial K.E. = $\frac{1}{2} \left(\frac{500}{1000} \right) (5)^2 + \frac{1}{2} \left(\frac{200}{1000} \right) (7)^2 = 11.15 \text{ J}$

Final K.E. =
$$\frac{1}{2} \left(\frac{500}{1000} \right) \left(\frac{5}{2} \right)^2 + \frac{1}{2} \left(\frac{200}{1000} \right) \left(\frac{1}{4} \right)^2 = 1.56875 \text{ J}$$

Loss in K.E. = 11.15 - 1.56878 = 9.58 J

(ii)

(iii)



Resolving forces along the line of greatest slope

At equilibrium and car ascending
$$\frac{10000}{v} = R + 8000 \sin \theta$$
$$\frac{10000}{v} = R + 8000 \left(\frac{1}{40}\right) = R + 200 \dots (i)$$

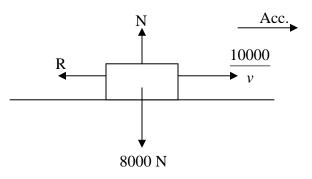
At equilibrium and car descending $\frac{10000}{2v} + 8000 \sin \theta = R$ $\frac{10000}{2v} + 8000 \left(\frac{1}{40}\right) = R \implies R = \frac{10000}{2v} + 200 \dots (ii)$

Substituting (ii) in (i), we get

$$\frac{10000}{v} = \frac{10000}{2v} + 200 + 200$$

This reduces to $\frac{10000}{2v} = 400 \implies v = \frac{10000}{800} = \frac{12.5 \text{ m/s}}{800}$
 \therefore speed of ascent = 12.5 m/s
Substituting v in (i), we get $\frac{10000}{12.5} = R + 200 \implies R = \frac{600 \text{ N}}{800}$

(ii)

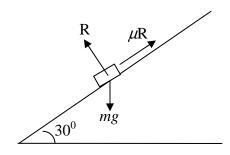


Applying Newton's second law i.e. F = ma, we get

 $\frac{10000}{v} - R = 8000a \implies \frac{10000}{12.5} - 600 = 800a$ Hence $a = 0.25 \text{ m/s}^2$

 \mathbf{Z}

(a)



At equilibrium

Resolving perpendicular to the line of greatest slope

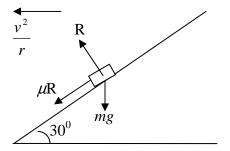
 $R = mg\cos 30^0 \quad \dots (i)$

Resolving along to the line of greatest slope

 $\mu R = mg \sin 30^0$...(ii)

(ii) ÷ (i)
$$\frac{\mu R}{R} = \frac{mg \sin 30^\circ}{mg \cos 30^\circ} \implies \mu = \tan 30^\circ = \frac{1}{\sqrt{3}}$$

(b)



At equilibrium

Resolving vertically:
$$R \cos 30^{\circ} - \mu R \sin 30^{\circ} = mg$$

 $\Rightarrow \qquad R(\cos 30^{\circ} - \mu \sin 30^{\circ}) = mg \dots (iii)$

Resolving horizontally.

Using
$$F = ma = \frac{mv^2}{r}$$
 for motion in a circle

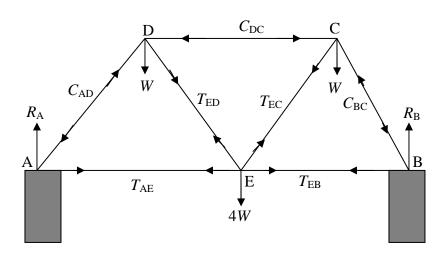
$$\leftarrow \qquad Rsin30^0 + \mu Rcos30^0 = \frac{mv^2}{r}$$

$$\Rightarrow \qquad R\left(\sin 30^0 + \mu \cos 30^0\right) = \frac{mv^2}{r} \dots (iv)$$
(iv) ÷ (iii)
$$\frac{R(\sin 30^0 + \mu \cos 30^0)}{R(\cos 30^0 - \mu \sin 30^0)} = \frac{mv^2}{rg} = \frac{v^2}{rg}$$
It simplifies to
$$\frac{(\sin 30^0 + \mu \cos 30^0)}{(\cos 30^0 - \mu \sin 30^0)} = \frac{v^2}{60(10)}$$

$$\frac{\left(0.5 + \frac{1}{\sqrt{3}} 0.866\right)}{\left(0.866 - \frac{1}{\sqrt{3}} 0.5\right)} = \frac{v^2}{600}$$

$$\Rightarrow \qquad v^2 = 1039.26$$
i.e.
$$v = \underline{32.24m/s}$$

(i)



Since the 7 rods are identical, then all the triangles are identical i.e. they are all equilateral triangles. By symmetry $C_{AD} = C_{CB}$; $T_{DE} = T_{CE}$ and $T_{AE} = T_{EB}$ As the external forces are at equilibrium By symmetry $R_A = R_B$ And resolving vertically, we have $R_A + R_B = W + W + 4W$ $\Rightarrow 2 R_B = 6W$ or $\underline{R_B = R_A = 3W}$

(ii)

Consider the internal forces (Each joint is in equilibrium)

At A
$$\uparrow$$
 $R_{A} = C_{AD} \sin 60^{\circ} \implies 3W = C_{AD} \left(\frac{\sqrt{3}}{2}\right) \text{ or } C_{AD} = \frac{6W}{\sqrt{3}}$
 $\therefore C_{CB} = C_{AD} = \frac{6W}{\sqrt{3}}$

At A
$$\leftrightarrow T_{AE} = C_{AD} \cos 60^{\circ} \Rightarrow T_{AE} = \frac{6W}{\sqrt{3}} \left(\frac{1}{2}\right)$$

 $\therefore T_{EB} = T_{AE} = \frac{3W}{\sqrt{3}}$
At E $\updownarrow 2T_{DE} \sin 60^{\circ} = 4W \Rightarrow 2T_{DE} \left(\frac{\sqrt{3}}{2}\right) = 4W$
 $\therefore T_{EC} = T_{DE} = \frac{4W}{\sqrt{3}}$
At D $\leftrightarrow C_{DC} = C_{AD} \cos 60^{\circ} + T_{DE} \cos 60^{\circ}$
 $C_{DC} = \left(\frac{6W}{\sqrt{3}}\right) \left(\frac{1}{2}\right) + \left(\frac{4W}{\sqrt{3}}\right) \left(\frac{1}{2}\right) = \frac{5W}{\sqrt{3}}$
Hence, rods AE and EB – we have a tension of magnitude $\frac{3W}{2}$

Hence rods AE and EB – we have a tension of magnitude $\frac{3W}{\sqrt{3}}$

rods AD and BC – we have a compression of magnitude $\frac{6W}{\sqrt{3}}$

rods DE and EC – we have a tension of magnitude $\frac{4W}{\sqrt{3}}$

rod DC – we have a compression of magnitude $\frac{5W}{\sqrt{3}}$